All Issue

2019 Vol.31, Issue 1 Preview Page
February 2019. pp. 41-48
Abstract
In pretensioned concrete members, a certain distance is required to transfer the prestressing force in strands to the concrete; this is the so-called transfer length, and it is dominated by bond performance between prestressing strands and surrounding concrete. Compared to the normal strength concrete, however, newly developed ultra-high performance concrete (UHPC) shows different bond characteristics of prestressing strands because it has a very dense matrix. Therefore, this experimental study was conducted to investigate the transfer length of prestressing strands in UHPC members, in which the compressive strength of UHPC and volume fraction of steel fiber were considered as the main variables. In addition, by comparing the test results with current code provisions and other models proposed by previous researchers, the applicability for estimation of the transfer length of UHPC members was examined.
프리텐션 콘크리트 부재에서는 긴장재의 프리스트레싱 힘을 콘크리트에 전달하기 위한 특정 길이가 요구되며, 이를 전달길이라고 정의한다. 이러한 전달길이는 긴장재와 콘크리트 사이의 부착성능에 의해 영향을 받는다. 한편 최근 새롭게 개발된 초고성능 콘크리트(UHPC)는 밀실한 매트릭스를 가지고 있기 때문에 일반강도 콘크리트와는 다른 긴장재와의 부착특성을 나타낸다. 따라서, 이 연구에서는 UHPC 부재에서 프리스트레싱 긴장재의 전달길이를 규명하기 위한 실험적 연구를 수행하였으며, 프리스트레스 도입 시 콘크리트 압축강도 및 강섬유 혼입률을 실험변수로 설정하였다. 이와 더불어, 실험결과를 현행 구조기준 및 이전 연구자들의 제안식과 비교함으로써 이들 식이 UHPC 부재의 전달길이 산정에 적용이 가능한지를 파악하고자 하였다.
References
  1. ACI Committee 318 (2014) Building Code Requirements for Structural Concrete and Commentary (ACI 318-14). American Concrete Institute, Farmington Hills, USA.
  2. American Association of state Highway and Transportation Officials (AASHTO) (2015) AASHTO LRFD Bridge Design Specifications: Customary U.S. customary Units. 7th Edition, Washington, D.C., USA.
  3. Cho, H. C., Park, M. K., Kim, M., Han, S. J., and Kim, K. S. (2016) Shear Strength Estimation of UHPC Flexural Members Based on Adaptive Neuro-Fuzzy Inference System. Journal of the Regional Association of Architectural Institute of Korea 20(1), 165-171. (In Korean)
  4. European Committee for Standardization (2004) Eurocode 2: Design of Concrete Structures – Part 1-1: General Rules and Rules for Buildings. Brussels, Belgium.
  5. Han, S. J., Lee, D. H., Cho, S. H., Ka, S. B., and Kim, K. S. (2016a) Estimation of Transfer Lengths in Precast Pretensioned Concrete Members based on a Modified Thick-Walled Cylinder Model. Structural Concrete 17(1), 52-62.
  6. Han, S. J., Lee, D. H., Oh, J. Y., Kim, K. S., and Yi, S. T. (2016b) Transfer Lengths of Pretensioned Concrete Members Reinforced with 2400 MPa High-strength Prestressing Tendons. Computers and Concrete 18(4), 779-792.
  7. Kim, M., Han, S. J., Cho, H. C., Oh, J. Y., and Kim, K. S. (2016) Prediction of Transfer Lengths in Pretensioned Concrete Members Using Neuro-Fuzzy System. Journal of the Korea Concrete Institute 28(6), 723-731. (in Korean)
  8. Korea Concrete Institute (2012) Design Specifications for Concrete Structures (KCI-M-12), Korea Concrete Institute, Seoul, Korea.
  9. Lim, W. and Hong, S. (2016) Shear Tests for Ultra-high Performance Fiber Reinforced Concrete (UHPFRC) with Shear Reinforcement. International of Concrete Structures and Materialsf 10(2), 177-188.
  10. Mitchell, D., Cook, W. D., Khan, A. A., and Tham, T. (1993) Influence of High Strength Concrete on Transfer and Development Length of Pretensioning Strand. PCI Journal 38(3), 52-66.
  11. Oh, B. H., Lim, S. N., and Choi, Y. C. (2004) Finite Element Analysis of Transfer Length in Pretensioned Prestressed Concrete Members. Journal of the Korea Concrete Institute 16(3), 293-302.
  12. Park, H. (2015) Behavior and Analysis of Transfer Zone in Pretensioned Prestressed Concrete Members. Ph.D. Dissertation. Seoul National University, Korea.
  13. Park, H. and Cho, J. Y. (2014) Bond-Slip-Strain Relationship in the Transfer Zone of Pretensioned Concrete Elements. ACI Structural Journal 111(3), 503-514.
  14. Qi, J., Wang, J., and Ma, Z. J. (2016) Flexural Response of High-strength Steel-ultra-high-performance Fiber Reinforced Concrete Beams based on a Mesoscale Constitutive Model: Experiment and Theory. Structural Concrete 19(3), 719-734.
  15. Russell, B. W. and Burns, N. H. (1993) Design Guidelines for Transfer, Development and Debonding on Large Diameter Seven Wire Strands in Pretensioned Concrete Girders. Center for Transportation Research, University of Texas at Austin, USA.
  16. Russell, B. W., and Burns, N. H. (1997) Measurement of Transfer Lengths of 0.5 and 0.6 in. Strands in Pretensioned Concrete. PCI Journal 41(5), 44-65.
  17. Ugural, A. C. and Fenster, S. K. (2003) Advanced Strength and Applied Elasticity. Prentice-Hall, USA.
  18. Wu, X. and Han, S. (2009) First Diagonal Cracking and Ultimate Shear of I-Shaped Reinforced Girders of Ultra High Performance Fiber Reinforced Concrete without Stirrup. International of Concrete Structures and Materials 3(1), 47-56.
Information
  • Publisher :Korea Concrete Institute
  • Publisher(Ko) :한국콘크리트학회
  • Journal Title :Journal of the Korea Concrete Institute
  • Journal Title(Ko) :콘크리트학회 논문집
  • Volume : 31
  • No :1
  • Pages :41-48