All Issue

2019 Vol.31, Issue 1 Preview Page
February 2019. pp. 11-20
Abstract
In this study, the results of an experimental investigation of the shear behavior of reinforced concrete structural walls subjected to eccentric compression loads are presented. Shear tests of six cantilever walls with a aspect ratio 2.0 were performed. The magnitude and eccentricity of the axial loads applied to the walls were considered as the test parameters. The tests showed that the failure mode and shear strength of the eccentrically loaded walls are significantly affected by the eccentricity. As the eccentricity increases, the failure mode changes from diagonal tension failure in the web to flexure-shear cracking failure, which results in a decrease in shear strength. The test strengths were compared with the shear strengths predicted in accordance with the provisions of ACI 318-14 and KCI 2012. Results indicate that the existing methods for walls and columns, based on diagonal tension and flexure-shear cracking failures, significantly underestimate the shear strengths of the eccentrically loaded walls.
이 연구에서는 편심압축력을 받는 철근콘크리트 벽체의 전단거동을 조사하였다. 형상비가 2.0인 6개의 켄틸레버 벽체에 대하여 전단실험을 수행하였다. 벽체에 가해진 압축력의 크기와 편심이 설계변수로 고려되었다. 실험결과에 따르면, 편심재하된 벽체의 파괴모드와 전단강도는 편심에 의하여 크게 영향을 받는다. 편심이 증가할 경우, 벽체의 파괴모드는 복부의 사인장균열파괴에서 휨전단균열파괴로 바뀌며, 그로 인하여 전단강도가 감소한다. 벽체의 실험강도는 ACI318-14 및 KCI 2012의 규정에 따라 예측한 전단강도와 비교하였다. 비교 결과, 사인장균열파괴와 휨전단균열파괴에 근거한 기존의 벽체 및 기둥 전단강도 평가방법은 편심재하된 벽체의 전단강도를 크게 저평가하는 것으로 나타났다.
References
  1. ACI Committee 318 (2014) Building Code Requirements and Commentary for Reinforced Concrete (ACI 318-14), American Concrete Institute, Detroit, MI.
  2. Baldwin, J. W. J., and Viest, I. M. (1958) Effect of Axial Compression on Shear Strength of Reinforced Concrete Frame Members. ACI Journal Proceedings 55(11), 635-654.
  3. Cardenas, A. E., and Magura, D. D. (1973) Strength of High-Rise Shear Walls.Rectangular Cross Sections, Response of Multistory Concrete Structures’ to Lateral Forces, SP-36, American Concrete Institute, Detroit, 1973, pp. 119-150.
  4. Cardenas, A. E., Hanson, J. M., Corley, W. G., and Hognestad, E. (1973) Design Provisions for Shear Walls. Journal of the American Concrete Institute, Proceedings 70(3), 221-230.
  5. CEN (2004) Eurocode 8.Earthquake Resistant Design of Structures. Pt. 1.3 General rules.specific Rules for Various Materials and Elements. Brussels, Belgium.
  6. Choi, K. K., Park, H. G., and Kim, H. M. (2010) Shear Strength Model for Slab-Column Connections. Journal of the Korean Concrete Institute 22(4), 585-593.
  7. Eom, T. S., Hwang, I. H., Lee, S. J., and Park, T. W. (2018) Failure Mode and Shear Strength of Nonprestressed Hollow-Core Slabs in One-Way Shear. ACI Structural Journal 115(4), 1121-1141.
  8. Eom, T. S., Park, H. G., and Kim, J. Y. (2010) Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web. Journal of the Korean Concrete Institute 22(1), 59-68.
  9. Joint ACI-ASCE Committee 326 (1962) Shear and Diagonal Tension. ACI Journal Proceedings 59, 1-30, 277-334, 352-396.
  10. Kim, S. H., Hwang, H. J., and Park, H. G. (2018) Shear Force Amplification Effect Addressing Nonlinear Dynamic Response in Slender RC Walls. Journal of the Korean Concrete Institute 30(2), 135-146.
  11. Korean Concrete Institute (2012), Design Codes for Concrete Structures (KCI 2012), Kimundang, Seoul. (Korean)
  12. Lee, J. H. (2016), Prestressed Concrete - Ultimate Strength Design Method and Limiate State Design Method, Dong Myeong Publishers.
  13. MacGregor, James G., and Hanson, John M. (1969) Proposed Changes in Shear Provisions for Reinforced and Prestressed Concrete Beams. ACI Journal Proceedings 66(4), 276-288.
  14. Morrow, J. and Viest, I. M. (1957) Shear Strength of Reinforced Concrete Frame Member without Web Reinforcement. ACI Journal Proceedings 53(3), 833-869.
  15. Noh, J. O., Park, H. G., Kim, C. G., Choi, K. K., and Lee, H. (2018) Effect of Non-Uniformly Distributed Shear Reinforcement on Shear Strength of Beams. Journal of the Korean Concrete Institute 30(3), 247-256. (in Korean)
  16. Ou, Y.-C. and Kurniawan, D. P. (2015) Effect of Axial Compression on Shear Behavior of High-Strength Reinforced Concrete Columns. ACI Structural Journal 112(2), 209-220.
  17. Wight, K. J. and MacGregor, J. G. (2012) Reinforced Concrete: Mechanics and Design, 6th Ed., Pearson Education, Inc., Upper Saddle River, Jew Jersey.
  18. Wood, S. L. (1990) Shear Strength of Low-Rise Reinforced Concrete Walls. ACI Structural Journal 87(1), 99-107.
Information
  • Publisher :Korea Concrete Institute
  • Publisher(Ko) :한국콘크리트학회
  • Journal Title :Journal of the Korea Concrete Institute
  • Journal Title(Ko) :콘크리트학회 논문집
  • Volume : 31
  • No :1
  • Pages :11-20